Analysis of satellite image time series for classification and change detection

Elliot Vincent - May 27th, 2025

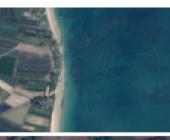
Committee:

Sébastien LEFEVRE (reviewer, Univ. Bretagne Sud) Jan Dirk WEGNER (reviewer, Univ. of Zurich) Pauline LUC (Google DeepMind) Charlotte PELLETIER (Univ. Bretagne Sud) Gabriele FACCIOLO (ENS Paris-Saclay) Mathieu AUBRY (advisor, ENPC) Jean PONCE (co-advisor, ENS-PSL/NYU)

Why do we care?

Why do we care?

Nice to look at?



Why do we care?

Acquired in enormous quantity every day?

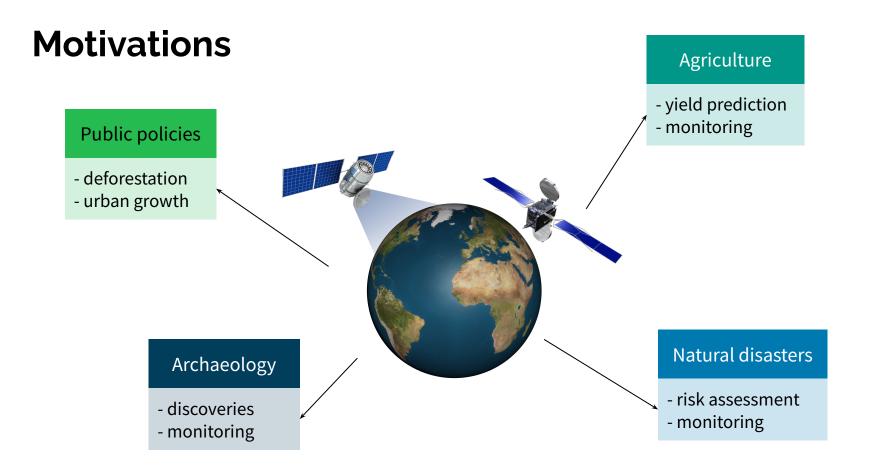
Nice to look at?

Why do we care?

Nice to look at?

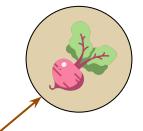
Acquired in enormous quantity every day?

Allow to describe land cover and detect changes over time



A toy example

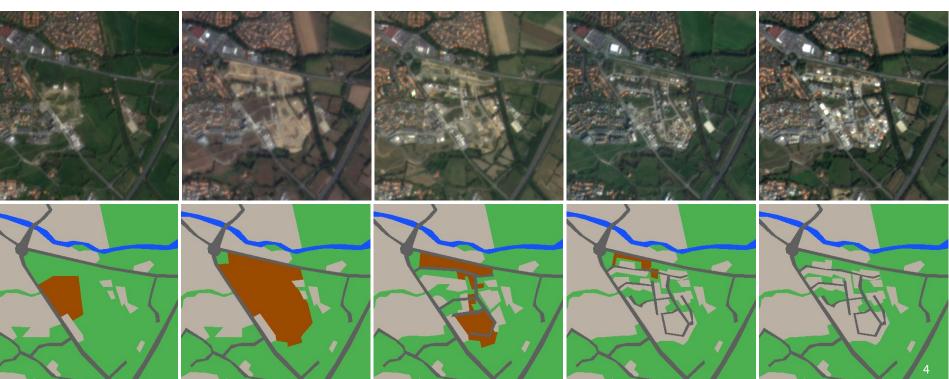
PlanetScope time series 5 images between April 2021 and August 2023 Each image ~1.2 km²



A toy example - Pixel-wise classification

A toy example - Object-based classification

A toy example - Semantic change detection



Water

Roads

Bare Soil

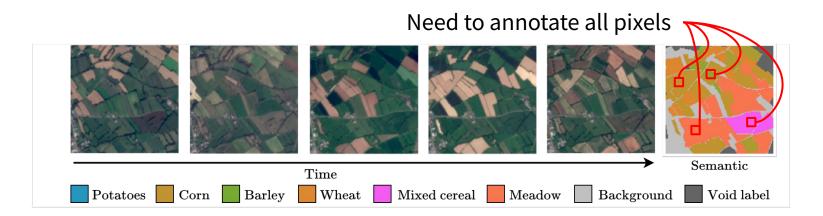
Vegetation

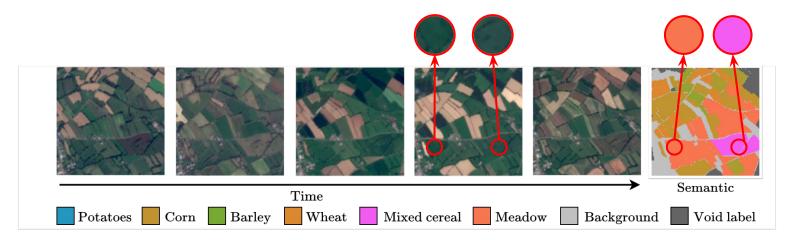
Built areas

Main challenge: scarcity of annotated data

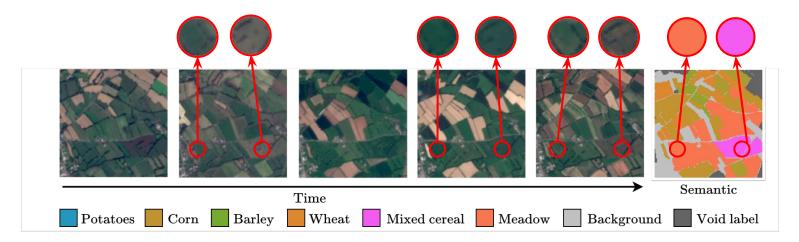
Datasets are "small, sparse, spatio-temporally clustered, and specialized"

E. Rolf et al. *Position: Mission Critical – Satellite Data is a Distinct Modality in Machine Learning*. ICML 2024.

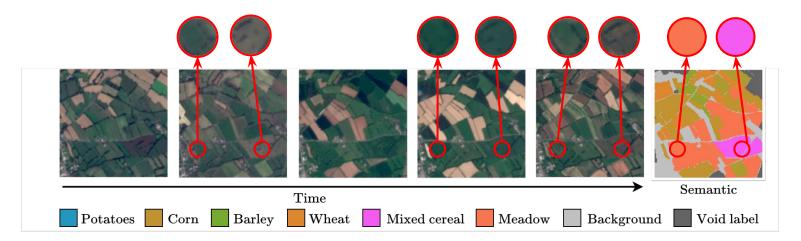




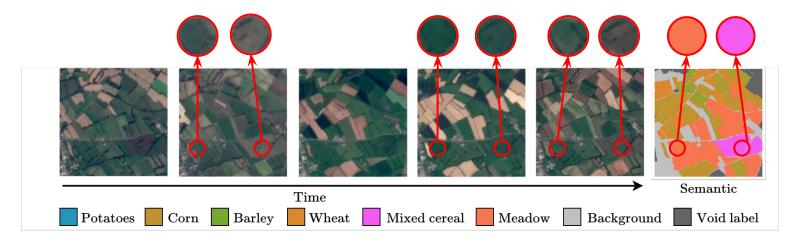
→ impossible to visually distinguish crops with a single image



→ temporality allows to visually distinguish crop types



→ experts required to qualify crop types → external databases may be available

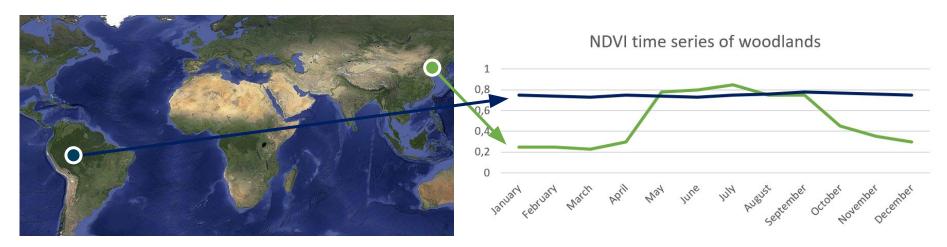


→ experts required to qualify crop types
→ external databases may be available
→ costly, time-consuming

Strong spatial and temporal domain shifts

Strong spatial and temporal domain shifts

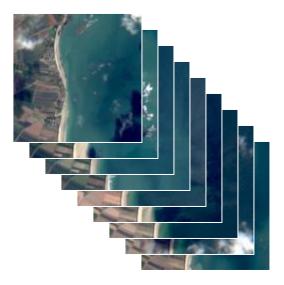
• **Spatial:** Variations due to geographical differences Caused by atmospheric conditions, sensor characteristics Example: Similar land covers (like different types of forests) appear differently



Strong spatial and temporal domain shifts

- **Spatial:** Variations due to geographical differences
- **Temporal:** Changes occurring over time
 - Caused by seasonal/weather variations, land-use changes, sensor degradation Results in changing statistical properties of image data

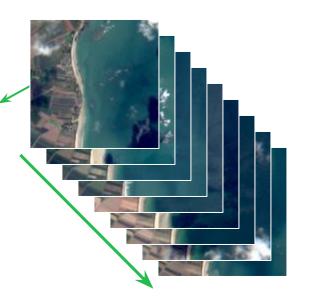
A tridimensional data type



A tridimensional data type

Temporal

- what temporal range?what temporal resolution?irregular sampling
- missing data



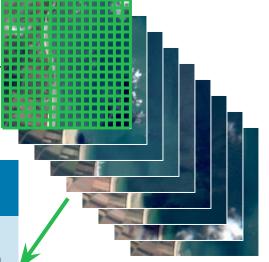
A tridimensional data type

Temporal

- what temporal range?what temporal resolution?irregular sampling
- missing data

Spatial

- what spatial resolution?
- trade-off with temporal resolution
- extent of a SITS often contain
- information irrelevant to the task



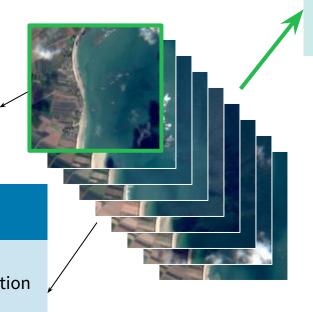
A tridimensional data type

Temporal

- what temporal range?what temporal resolution?irregular sampling
- missing data

Spatial

- what spatial resolution?
- trade-off with temporal resolution
- extent of a SITS often contain
- information irrelevant to the task



Spectral

- from multi- to hyperspectral imagery
- heavy (storage, loading, ...)
- most pretrained vision model RGB only

Blue

VRE 1

NIR

Green

VRE 2

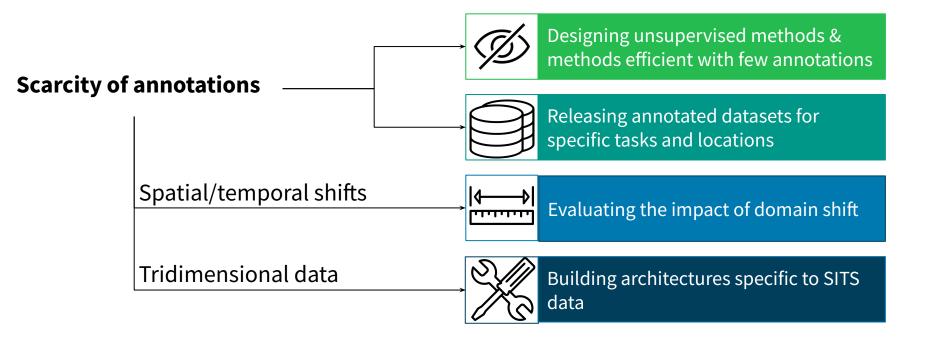
SWIR 1

Red

VRE 3

9

Contributions



Publications

Pixel-wise Agricultural Image Time Series Classification: Comparison and a Deformable Prototype-based Approach **E. Vincent**, J. Ponce, M. Aubry – IGARSS 2025

Satellite Image Time Series Semantic Change Detection: Novel Architecture and Analysis of Domain Shift **E. Vincent**, J. Ponce, M. Aubry – arXiv 2024

Best student paper award Detecting Looted Archaeological Sites from Satellite Image Time Series E. Vincent, M. Saroufim, J. Chemla, Y. Ubelmann, P. Marquis, J. Ponce, M. Aubry – EarthVision CVPR Workshop 2025

CoDEx: Combining Domain Expertise for Spatial Generalization in Satellite Image Analysis A. Kuriyal, E. Vincent, M. Aubry, L. Landrieu – EarthVision CVPR Workshop 2025

Unsupervised Layered Image Decomposition into Object Prototypes T. Monnier, E. Vincent, J. Ponce, M. Aubry – ICCV 2021

A Model You Can Hear: Audio Identification with Playable Prototypes R. Loiseau, B. Bouvier, Y. Teytaut, E. Vincent, M. Aubry, L. Landrieu – ISMIR 2022

Learnable Earth Parser: Discovering 3D Prototypes in Aerial Scans R. Loiseau, E. Vincent, M. Aubry, L. Landrieu – CVPR 2024

OpenStreetView-5M: The Many Roads to Global Visual Geolocation G. Astruc, N. Dufour, I. Siglidis, C. Aronssohn, N. Bouia, S. Fu, R. Loiseau, V. Nguyen, C. Raude, E. Vincent, L. Xu, H. Zhou, L. Landrieu – CVPR 2024

Historical Printed Ornaments: Dataset and Tasks S. Chaki, S. Baltaci, E. Vincent, R. Emonet, F. Vial-Bonacci, C. Bahier-Porte, M. Aubry, T. Fournel – ICDAR 2024

Outline

1 Afghan archaeological site looting detection

2 Semantic change detection and domain shift analysis

3 Crop-type classification with few or no annotations

Outline



1 Afghan archaeological site looting detection

Detecting Looted Archaeological Sites from Satellite Image Time Series **E. Vincent**, M. Saroufim, J. Chemla, Y. Ubelmann, P. Marquis, J. Ponce, M. Aubry EarthVision CVPR Workshop 2025

Best student paper award

2 Semantic change detection and domain shift analysis

> CoDEx: Combining Domain Expertise for Spatial Generalization in Satellite Image Analysis A. Kuriyal, **E. Vincent**, M. Aubry, L. Landrieu – EarthVision CVPR Workshop 2025

3 Crop-type classification with few or no annotations

Pixel-wise Agricultural Image Time Series Classification: Comparison and a Deformable Prototype-based Approach **E. Vincent**, J. Ponce, M. Aubry – IGARSS 2025

Outline

1 Afghan archaeological site looting detection Detecting Looted Archaeological Sites from Satellite Image Time Series E. Vincent, M. Saroufim, J. Chemla, Y. Ubelmann, P. Marquis, J. Ponce, M. Aubry EarthVision CVPR Workshop 2025

Best student paper award

2 Semantic change detection and domain shift analysis Satellite Image Time Series Semantic Change Detection: Novel Architecture and Analysis of Domain Shift E. Vincent, J. Ponce, M. Aubry – arXiv 2024

CoDEx: Combining Domain Expertise for Spatial Generalization in Satellite Image Analysis A. Kuriyal, **E. Vincent**, M. Aubry, L. Landrieu – EarthVision CVPR Workshop 2025

3 Crop-type classification with few or no annotations

Pixel-wise Agricultural Image Time Series Classification: Comparison and a Deformable Prototype-based Approach **E. Vincent**, J. Ponce, M. Aubry – IGARSS 2025

Case study

- +5000 archaeological sites in Afghanistan
- First detected instance of looting at Dilberjin (DAFA, 2022)
- Ongoing looting activities
- Impossible ground surveys

→ Need for automated monitoring processes

AFGHANISTAN · INVESTIGATIONS

Looting of Afghanistan archaeological site attributed to IS

By Jacques Follorou

Published on April 8, 2023, at 7:00 am (Paris) Ō 7 min read <u>Lire en français</u>

NEWS | Dilberjin, the largest ancient urban center in the north of the country, suffered irreparable damage between 2019 and 2021. The destruction is attributable to criminal groups tied to the Islamic State organization, using methods previously seen in Syria and Iraq.

Le Monde - April 8, 2023

- A tool to assist archaeologist on the ground
- Several advantages (cost, rapidity, practicality)
- Rich literature on site monitoring with satellite/aerial images:
 - \circ manually (comparison, counting)
 - automatically (change detection, detecting pits/holes)

Casana et al., 2014 - Syria

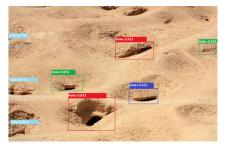
- Deep learning methods have been evaluated, but:
 - no systematic comparison of baselines
 - \circ often a single use case
 - very few datasets, few are released publicly

	Open- access	Multi- temporal	Spatial resolution	Temporal resolution	Sensor	Location	Number of sites
Masini et al. (2020)	X	1	Varying	Yearly	Satellite	Syria	2
El Hajj (2021)	X	×	15m/px		Satellite	Syria and Iraq	9
Payntar (2023)	X	1	30m/px	Every 5 years	Satellite	Peru	477
Altaweel et al. (2024)	1	X	3cm/px		UAV	Worldwide	95

- Deep learning methods have been evaluated, but:
 - no systematic comparison of baselines
 - \circ often a single use case
 - very few datasets, few are released publicly

	Open- access	Multi- temporal	Spatial resolution	Temporal resolution	Sensor	Location	Number of sites
Masini et al. (2020)	×	1	Varying	Yearly	Satellite	Syria	2
El Hajj (2021)	×	×	15m/px		Satellite	Syria and Iraq	9
Payntar (2023)	×	1	30m/px	Every 5 years	Satellite	Peru	477
Altaweel et al. (2024)	1	×	3cm/px		UAV	Worldwide	95

YOLO to detect and count looting pits on UAV (drones) images

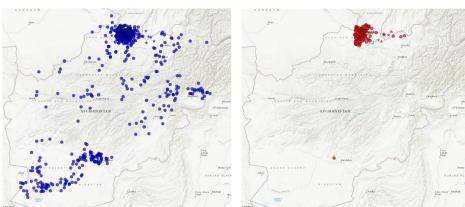


- Deep learning methods have been evaluated, but:
 - no systematic comparison of baselines
 - \circ often a single use case
 - very few datasets, few are released publicly

	Open- access	Multi- temporal	Spatial resolution	Temporal resolution	Sensor	Location	Number of sites
Masini et al. (2020)	×	1	Varying	Yearly	Satellite	Syria	2
El Hajj (2021)	×	×	15m/px		Satellite	Syria and Iraq	9
Payntar (2023)	X	1	30m/px	Every 5 years	Satellite	Peru	477
Altaweel et al. (2024)	1	×	3cm/px	_	UAV	Worldwide	95
DAFA-LS (ours)	1	1	3.8m/px	Monthly	Satellite	Afghanistan	675

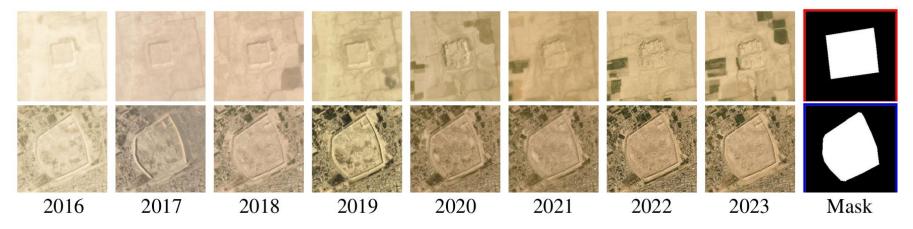
Introducing DAFA-LS

- 55,480 satellite images over 8 years (2016-2023)
- 675 archaeological sites
- 135 were looted during the period
- Monthly Planet satellite image time series (SITS)
- Preservation status + coarse location mask



(a) Map of preserved sites

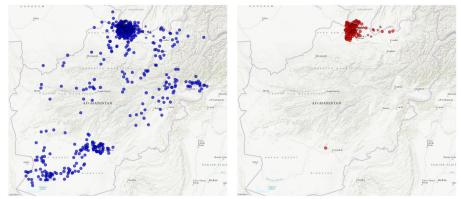
(b) Map of looted sites



Introducing DAFA-LS

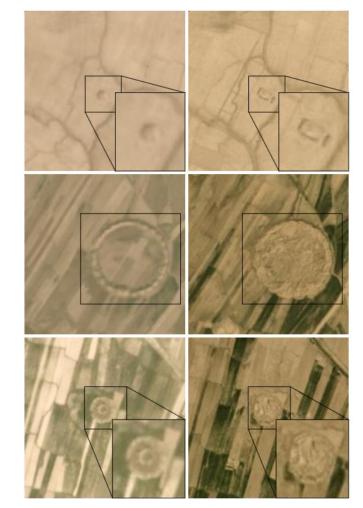
Special care in our data splits formulation, limiting

- **surface bias:** larger sites more likely to be looted
- **geographical bias:** northern sites more likely to be looted
- + 5 spatially separated train/val folds



(a) Map of preserved sites

(b) Map of looted sites



Examples of before/after looting marks ¹

Benchmarking deep learning methods

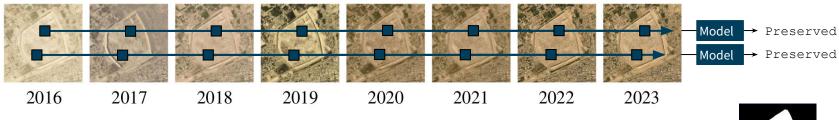
Multi-frame pixel-wise methods, 1 prediction for each pixel sequence,
 → aggregating predictions <u>spatially</u>

Single-frame whole-image methods, 1 prediction for each time step,
 → aggregating predictions temporally

3. Multi-frame whole-image methods, *direct prediction*

Benchmarking deep learning methods

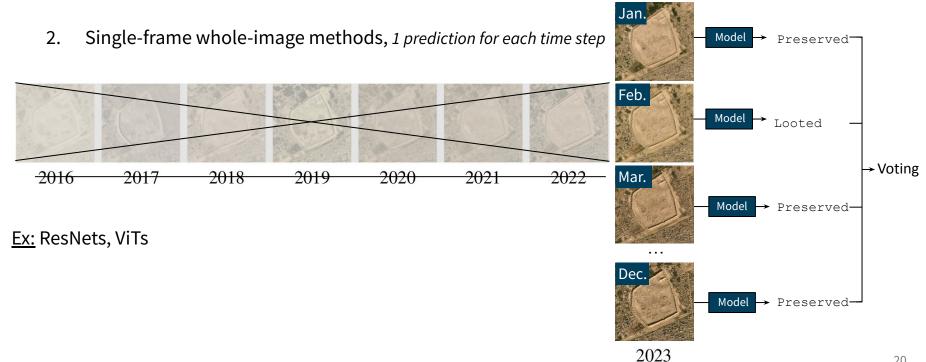
1. Multi-frame pixel-wise methods, 1 prediction for each pixel sequence



Ex: TempCNN, DuPLo, LTAE

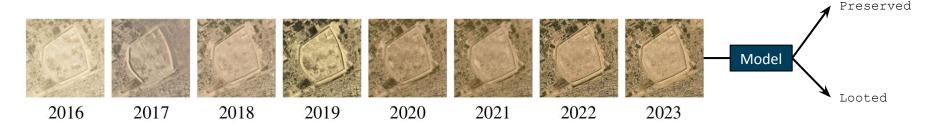
Voting

Benchmarking deep learning methods



Benchmarking deep learning methods

3. Multi-frame whole-image methods, *direct prediction*



Ex: ViTs + LTAE

Good image representation, pre-trained (SatMAE, Scale-MAE, DOFA)

Method	#param (x1000)	OA↑	F1↑	AUROC↑	Big table,
Single-frame methods					Wow, lots of numbers!
ResNet20	269.2	54.7 (8.9)	54.5 (17.1)	75.3 (3.1)	wow, lots of numbers
ResNet18	11,177.5	71.8 (2.6)	64.1 (5.4)	84.5 (1.5)	
ResNet34	21,285.7	74.1 (3.2)	<u>68.9</u> (6.3)	<u>85.2</u> (1.7)	
SatMAE	2.1	63.6 (0.7)	41.9 (0.4)	75.3 (0.2)	
Scale-MAE	2.1	62.6 (0.7)	39.3 (1.9)	76.0 (0.3)	
DOFA	1.5	<u>76.7</u> (2.8)	67.0 (4.2)	84.0 (1.4)	
Multi-frame methods					
Pixel-wise methods					
DuPLo	86.8	52.1 (2.8)	50.4 (4.9)	50.9 (3.7)	
TempCNN	28.5	55.7 (3.4)	44.2 (9.7)	58.8 (1.8)	
Transformer	38.5	56.4 (3.7)	63.5 (3.2)	62.7 (4.1)	
LTAE	32.2	52.5 (7.8)	58.0 (4.6)	62.0 (8.5)	
Whole-image methods					
PSE+LTAE	34.0	55.1 (9.8)	47.7 (6.2)	59.5 (6.3)	
UTAE	68.9	62.0 (3.5)	58.9 (2.3)	64.5 (4.5)	
TSViT (cls. head)	236.9	64.3 (1.2)	53.0 (3.7)	70.8 (2.3)	
TSViT (seg. head)	237.4	64.6 (3.5)	60.2 (7.1)	69.6 (4.2)	
SatMAE+LTAE	1,627.9	67.9 (4.7)	64.7 (4.0)	75.2 (3.7)	
Scale-MAE+LTAE	1,627.9	68.5 (2.4)	56.4 (7.7)	77.6 (0.8)	
DOFA+LTAE	926.1	78.7 (2.3)	74.9 (3.5)	87.1 (3.0)	

22

Method	#param (x1000)	OA↑	F1↑	AUROC↑	
Single-frame methods					Pixel-wise methods are
ResNet20	269.2	54.7 (8.9)	54.5 (17.1)	75.3 (3.1)	
ResNet18	11,177.5	71.8 (2.6)	64.1 (5.4)	84.5 (1.5)	clearly outperformed by
ResNet34	21,285.7	74.1 (3.2)	<u>68.9</u> (6.3)	<u>85.2</u> (1.7)	
SatMAE	2.1	63.6 (0.7)	41.9 (0.4)	75.3 (0.2)	others \rightarrow importance of
Scale-MAE	2.1	62.6 (0.7)	39.3 (1.9)	76.0 (0.3)	
DOFA	1.5	<u>76.7</u> (2.8)	67.0 (4.2)	84.0 (1.4)	spatial context
Multi-frame methods					
Pixel-wise methods					
DuPLo	86.8	52.1 (2.8)	50.4 (4.9)	50.9 (3.7)	
TempCNN	28.5	55.7 (3.4)	44.2 (9.7)	58.8 (1.8)	
Transformer	38.5	56.4 (3.7)	63.5 (3.2)	62.7 (4.1)	
LTAE	32.2	52.5 (7.8)	58.0 (4.6)	62.0 (8.5)	
Whole-image methods					
PSE+LTAE	34.0	55.1 (9.8)	47.7 (6.2)	59.5 (6.3)	
UTAE	68.9	62.0 (3.5)	58.9 (2.3)	64.5 (4.5)	
TSViT (cls. head)	236.9	64.3 (1.2)	53.0 (3.7)	70.8 (2.3)	
TSViT (seg. head)	237.4	64.6 (3.5)	60.2 (7.1)	69.6 (4.2)	
SatMAE+LTAE	1,627.9	67.9 (4.7)	64.7 (4.0)	75.2 (3.7)	
Scale-MAE+LTAE	1,627.9	68.5 (2.4)	56.4 (7.7)	77.6 (0.8)	
DOFA+LTAE	926.1	78.7 (2.3)	74.9 (3.5)	87.1 (3.0)	

					Temporal methods
Method	#param (x1000)	OA↑	F1↑	AUROC↑	improve over
Single-frame methods					
ResNet20	269.2	54.7 (8.9)	54.5 (17.1)	75.3 (3.1)	single-frame methods
ResNet18	11,177.5	71.8 (2.6)	64.1 (5.4)	84.5 (1.5)	single-name methous
ResNet34	21,285.7	74.1 (3.2)	<u>68.9</u> (6.3)	<u>85.2</u> (1.7)	
SatMAE	2.1	63.6 (0.7)	41.9 (0.4)	75.3 (0.2)	luce and menune and attend
Scale-MAE	2.1	62.6 (0.7)	39.3 (1.9)	76.0 (0.3)	Image representation
DOFA	1.5	<u>76.7</u> (2.8)	67.0 (4.2)	84.0 (1.4)	_
Multi-frame methods					
Pixel-wise methods					
DuPLo	86.8	52.1 (2.8)	50.4 (4.9)	50.9 (3.7)	On average:
TempCNN	28.5	55.7 (3.4)	44.2 (9.7)	58.8 (1.8)	
Transformer	38.5	56.4 (3.7)	63.5 (3.2)	62.7 (4.1)	+6% Accuracy
LTAE	32.2	52.5 (7.8)	58.0 (4.6)	62.0 (8.5)	+37% F1 score
Whole-image methods					
PSE+LTAE	34.0	55.1 (9.8)	47.7 (6.2)	59.5 (6.3)	
UTAE	68.9	62.0 (3.5)	58.9 (2.3)	64.5 (4.5)	
TSViT (cls. head)	236.9	64.3 (1.2)	53.0 (3.7)	70.8 (2.3)	
TSViT (seg. head)	237.4	64.6 (3.5)	60.2 (7.1)	69.6 (4.2)	\checkmark
SatMAE+LTAE	1,627.9	67.9 (4.7)	64.7 (4.0)	75.2 (3.7)	Image representation
Scale-MAE+LTAE	1,627.9	68.5 (2.4)	56.4 (7.7)	77.6 (0.8)	•
DOFA+LTAE	926.1	78.7 (2.3)	74.9 (3.5)	87.1 (3.0)	+ temporal attention

Method	#param (x1000)	OA↑	F1↑	AUROC↑
Single-frame methods				
ResNet20	269.2	54.7 (8.9)	54.5 (17.1)	75.3 (3.1)
ResNet18	11,177.5	71.8 (2.6)	64.1 (5.4)	84.5 (1.5)
ResNet34	21,285.7	74.1 (3.2)	<u>68.9</u> (6.3)	<u>85.2</u> (1.7)
SatMAE	2.1	63.6 (0.7)	41.9 (0.4)	75.3 (0.2)
Scale-MAE	2.1	62.6 (0.7)	39.3 (1.9)	76.0 (0.3)
DOFA	1.5	<u>76.7</u> (2.8)	67.0 (4.2)	84.0 (1.4)
Multi-frame methods				
Pixel-wise methods				
DuPLo	86.8	52.1 (2.8)	50.4 (4.9)	50.9 (3.7)
TempCNN	28.5	55.7 (3.4)	44.2 (9.7)	58.8 (1.8)
Transformer	38.5	56.4 (3.7)	63.5 (3.2)	62.7 (4.1)
LTAE	32.2	52.5 (7.8)	58.0 (4.6)	62.0 (8.5)
Whole-image methods				
PSE+LTAE	34.0	55.1 (9.8)	47.7 (6.2)	59.5 (6.3)
UTAE	68.9	62.0 (3.5)	58.9 (2.3)	64.5 (4.5)
TSViT (cls. head)	236.9	64.3 (1.2)	53.0 (3.7)	70.8 (2.3)
TSViT (seg. head)	237.4	64.6 (3.5)	60.2 (7.1)	69.6 (4.2)
SatMAE+LTAE	1,627.9	67.9 (4.7)	64.7 (4.0)	75.2 (3.7)
Scale-MAE+LTAE	1,627.9	68.5 (2.4)	56.4 (7.7)	77.6 (0.8)
DOFA+LTAE	926.1	78.7 (2.3)	74.9 (3.5)	87.1 (3.0)

"Foundation models" provide strong representations for this downstream task

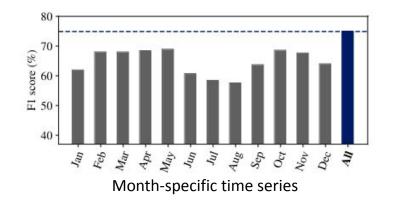
Best performing model: DOFA

(pretrained, frozen) + LTAE

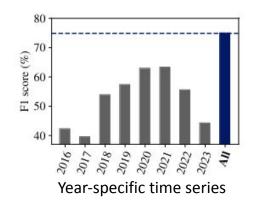
Temporal analysis

• Inference experiments with DOFA+LTAE

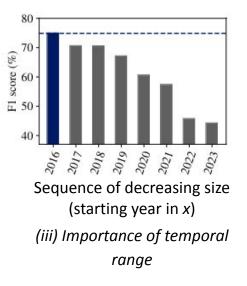
 \rightarrow The more time steps, the better



(i) Seasonal behaviour



(ii) Indicating looting activities?



Outline

- 1 Afghan archaeological site looting detection
- Providing labeled data for a specific task/location
 Making use of pre-trained off-the-shelf models



2 Semantic change detection and domain shift analysis

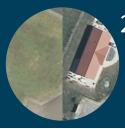
3 Crop-type classification with few or no annotations

Outline

1 Afghan archaeological site looting detection

Detecting Looted Archaeological Sites from Satellite Image Time Series **E. Vincent**, M. Saroufim, J. Chemla, Y. Ubelmann, P. Marquis, J. Ponce, M. Aubry EarthVision CVPR Workshop 2025

Best student paper award



2 Semantic change detection and domain shift analysis CoDEx: Combining Domain Expertise for Spatial Generalization in Satellite Image Analysis

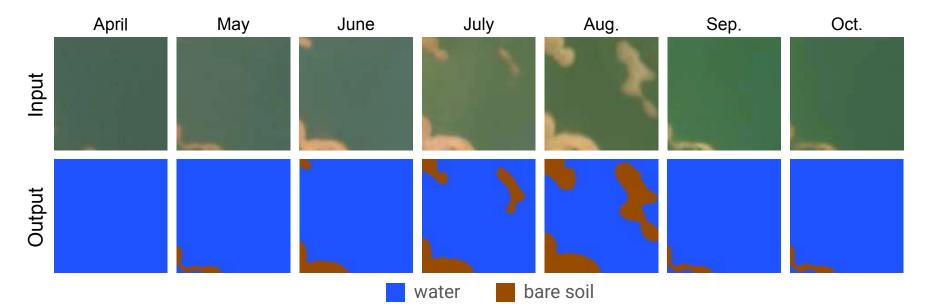
A. Kuriyal, E. Vincent, M. Aubry, L. Landrieu – EarthVision CVPR Workshop 2025

3 Crop-type classification with few or no annotations

Pixel-wise Agricultural Image Time Series Classification: Comparison and a Deformable Prototype-based Approach **E. Vincent**, J. Ponce, M. Aubry – IGARSS 2025

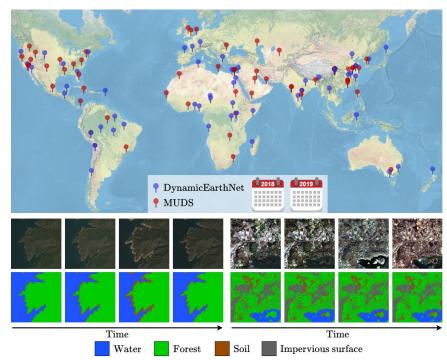
Semantic Change Detection

Time series allow to spot land cover change at high frequency (e.g. monthly)



Spatial and temporal domain shift

Methods evaluated in settings with **domain shift**



→ global and multi-year datasets → allow us to define challenging dataset splits exhibiting either spatial or temporal domain shift

Domain shift settings

- 2 land-cover SITS datasets: DynamicEarthNet and MUDS
 - global spatial coverage
 - multi-year temporal coverage
- 3 domain shift settings

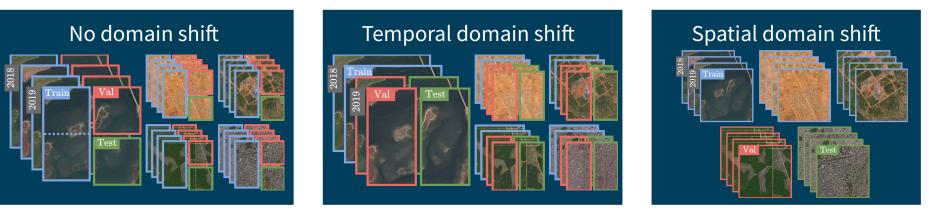
Domain shift settings

- 2 land-cover SITS datasets: DynamicEarthNet and MUDS
 - global spatial coverage
 - multi-year temporal coverage
- 3 domain shift settings

Toker, A., et al. "Dynamicearthnet: Daily multi-spectral satellite dataset for semantic change segmentation" *CVPR* 2022. Van Etten, A., et al. "The multi-temporal urban development spacenet dataset" *CVPR* 2021.

Domain shift settings

- 2 land-cover SITS datasets: DynamicEarthNet and MUDS
 - global spatial coverage
 - multi-year temporal coverage
- 3 domain shift settings

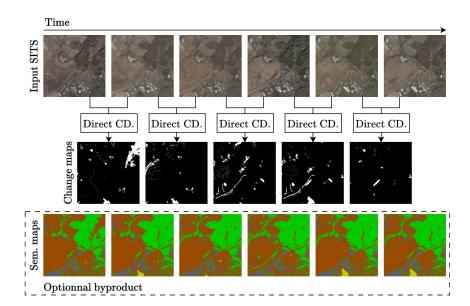


Toker, A., et al. "Dynamicearthnet: Daily multi-spectral satellite dataset for semantic change segmentation" *CVPR* 2022. Van Etten, A., et al. "The multi-temporal urban development spacenet dataset" *CVPR* 2021.

Semantic Change Detection

Time series allow to spot land cover change at high frequency (e.g. monthly) But most change detection approaches are either:

• **bi-temporal** (process image pairs)

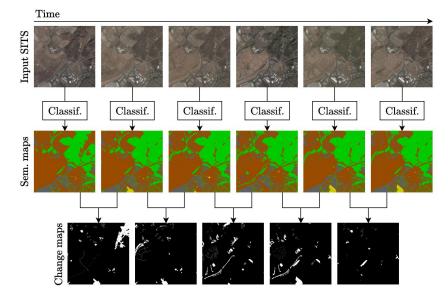


→ siamese architectures, 3-branch networks, multi-task learning, etc.

Semantic Change Detection

Time series allow to spot land cover change at high frequency (e.g. monthly) But most change detection approaches are either:

- **bi-temporal** (process image pairs)
- mono-frame (post-classification methods)

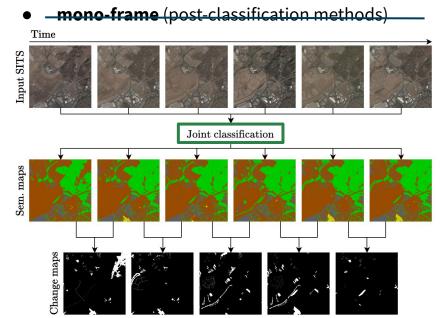


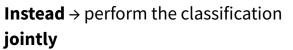
 \rightarrow build on SOTA segmentation methods

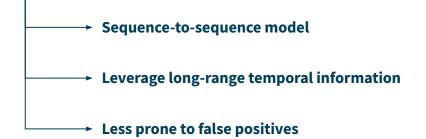
SITS-Semantic Change Detection

Time series allow to spot land cover change at high frequency (e.g. monthly) But most change detection approaches are either:

bi-temporal (process image pairs)



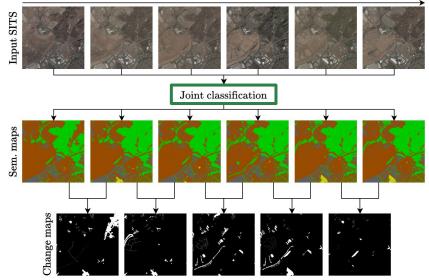




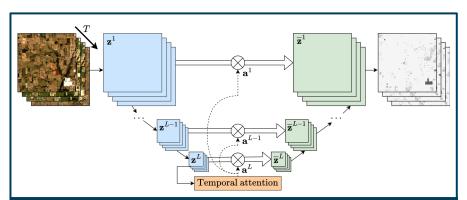
SITS-Semantic Change Detection

Time series allow to spot land cover change at high frequency (e.g. monthly) But most change detection approaches are either:

- bi-temporal (process image pairs)
- mono-frame (post-classification methods) Time



Instead → perform the classification **jointly**



Editing the temporal attention mechanism of UTAE

V. Sainte Fare Garnot *et al. Panoptic segmentation of satellite image time series with convolutional temporal attention networks.* CVPR 2021.

	Method	Input type	Strategy
DynamicEarthNet	Random TSViT monthly UTAE monthly TSViT weekly UTAE weekly A2Net SCanNet TSSCD Ours	— Single image Single image SITS SITS Image pair Image pair Pixel-wise SITS SITS	— Mono Mono Mono Bi Bi Bi Multi Multi
MUDS	Random TSViT monthly UTAE monthly A2Net SCanNet TSSCD Ours	— Single image Single image Image pair Image pair Pixel-wise SITS SITS	— Mono Bi Bi Multi Multi

Mono-frame methods

- Bi-temporal methods
- → Sequence-to-sequence (pixel-wise)
- → Sequence-to-sequence

	Method	Input type	Strategy	No domain BC↑ n	shift nIoU↑	Tempora BC↑	al domain shift mIoU↑	Spatial o BC↑	domain shift mIoU↑
DynamicEarthNet	Random TSViT monthly UTAE monthly TSViT weekly UTAE weekly A2Net SCanNet TSSCD Ours	— Single image Single image SITS SITS Image pair Image pair Pixel-wise SITS SITS	— Mono Mono Mono Bi Bi Multi Multi	Binary change	-	Semanti gmenta	-		
MUDS	Random TSViT monthly UTAE monthly A2Net SCanNet TSSCD Ours	— Single image Single image Image pair Image pair Pixel-wise SITS SITS	— Mono Bi Bi Multi Multi						

Binary change **S**

Semantic segmentation

	Method	Input type	Strategy	No don BC↑	nain shift mIoU↑	Tempora BC↑	al domain shift mIoU↑	Spatial BC↑	domain shift mIoU↑
	Random			4.9	7.3	5.0	7.3	4.9	7.1
et	TSViT monthly	Single image	Mono	11.8	50.5	9.9	47.3	7.9	31.2
N	UTAE monthly	Single image	Mono	13.8	53.7	10.9	53.7	9.0	36.9
arthNe	TSViT weekly	SITS	Mono	12.5	50.9	10.9	51.4	7.4	32.2
сE	UTAE weekly	SITS	Mono	14.3	54.4	11.3	54.7	8.7	37.8
DynamicE	A2Net	Image pair	Bi	11.5	47.2	11.0	46.7	8.2	37.9
yna	SCanNet	Image pair	Bi	13.9	53.0	13.1	55.6	9.3	37.3
Ð.	TSSCD	Pixel-wise SITS	Multi	4.7	33.9	5.2	29.4	5.2	22.9
	Ours	SITS	Multi	22.4	60.5	15.3	61.7	10.1	38.5
12	Random		-	0.1	28.1	0.1	28.1	0.1	28.1
	TSViT monthly	Single image	Mono	0.5	60.2	0.5	56.8	0.4	49.8
S	UTAE monthly	Single image	Mono	0.6	67.1	0.6	66.0	0.6	63.0
D	A2Net	Image pair	Bi	0.5	61.5	0.6	56.1	0.5	53.0
M	SCanNet	Image pair	Bi	0.7	64.9	0.8	62.8	0.4	58.8
	TSSCD	Pixel-wise SITS	Multi	0.1	47.7	0.2	49.6	0.1	43.6
	Ours	SITS	Multi	1.7	72.0	1.9	71.1	0.7	66.2

Semantic segmentation

Results

	Method	Input type	Strategy	No don BC↑	nain shift mIoU↑	Tempora BC↑	al domain shift mIoU↑	Spatial BC↑	domain shift mIoU↑
	Random		_	4.9	7.3	5.0	7.3	4.9	7.1
et	TSViT monthly	Single image	Mono	11.8	50.5	9.9	47.3	7.9	31.2
arthN	UTAE monthly	Single image	Mono	13.8	53.7	10.9	53.7	9.0	36.9
artl	TSViT weekly	SITS	Mono	12.5	50.9	10.9	51.4	7.4	32.2
сE	UTAE weekly	SITS	Mono	14.3	54.4	11.3	54.7	8.7	37.8
imi	A2Net	Image pair	Bi	11.5	47.2	11.0	46.7	8.2	37.9
ynamicE	SCanNet	Image pair	Bi	13.9	53.0	13.1	55.6	9.3	37.3
Ð.	TSSCD	Pixel-wise SITS	Multi	4.7	33.9	5.2	29.4	5.2	22.9
	Ours	SITS	Multi	22.4	60.5	15.3	61.7	10.1	38.5
45	Random			0.1	28.1	0.1	28.1	0.1	28.1
	TSViT monthly	Single image	Mono	0.5	60.2	0.5	56.8	0.4	49.8
S	UTAE monthly	Single image	Mono	0.6	67.1	0.6	66.0	0.6	63.0
MUD	A2Net	Image pair	Bi	0.5	61.5	0.6	56.1	0.5	53.0
Μ	SCanNet	Image pair	Bi	0.7	64.9	0.8	62.8	0.4	58.8
	TSSCD	Pixel-wise SITS	Multi	0.1	47.7	0.2	49.6	0.1	43.6
25.	Ours	SITS	Multi	1.7	72.0	1.9	71.1	0.7	66.2

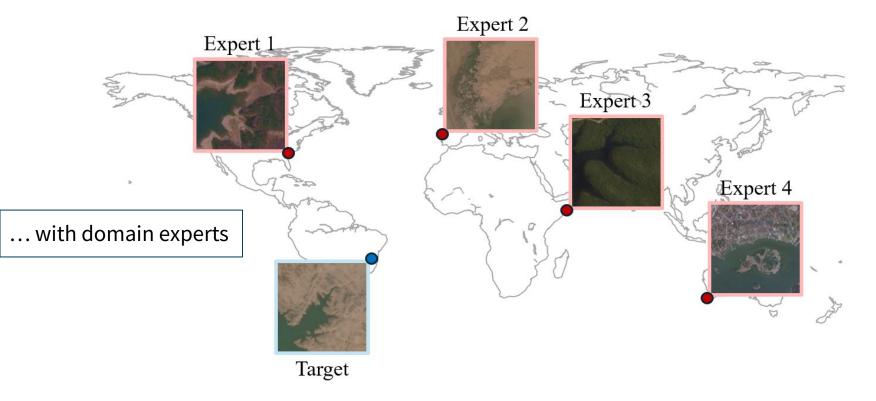
Binary change

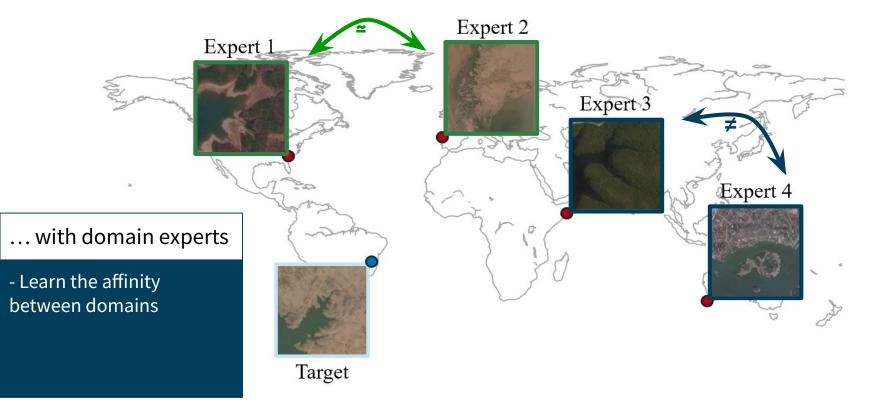
Results

	Method	Input type	Strategy	No don BC↑	nain shift mIoU↑	Tempora BC↑	al domain shift mIoU↑	Spatial BC↑	domain shift mIoU↑
	Random		—	4.9	7.3	5.0	7.3	4.9	7.1
et	TSViT monthly	Single image	Mono	11.8	50.5	9.9	47.3	7.9	31.2
arthNo	UTAE monthly	Single image	Mono	13.8	53.7	10.9	53.7	9.0	36.9
artl	TSViT weekly	SITS	Mono	12.5	50.9	10.9	51.4	7.4	32.2
СE	UTAE weekly	SITS	Mono	14.3	54.4	11.3	54.7	8.7	37.8
ynamicE	A2Net	Image pair	Bi	11.5	47.2	11.0	46.7	8.2	37.9
/na	SCanNet	Image pair	Bi	13.9	53.0	13.1	55.6	9.3	37.3
Ď	TSSCD	Pixel-wise SITS	Multi	4.7	33.9	5.2	29.4	5.2	22.9
	Ours	SITS	Multi	22.4	60.5	15.3	61.7	10.1	38.5
85	Random			0.1	28.1	0.1	28.1	0.1	28.1
	TSViT monthly	Single image	Mono	0.5	60.2	0.5	56.8	0.4	49.8
S	UTAE monthly	Single image	Mono	0.6	67.1	0.6	66.0	0.6	63.0
D	A2Net	Image pair	Bi	0.5	61.5	0.6	56.1	0.5	53.0
IM	SCanNet	Image pair	Bi	0.7	64.9	0.8	62.8	0.4	58.8
	TSSCD	Pixel-wise SITS	Multi	0.1	47.7	0.2	49.6	0.1	43.6
	Ours	SITS	Multi	1.7	72.0	1.9	71.1	0.7	66.2

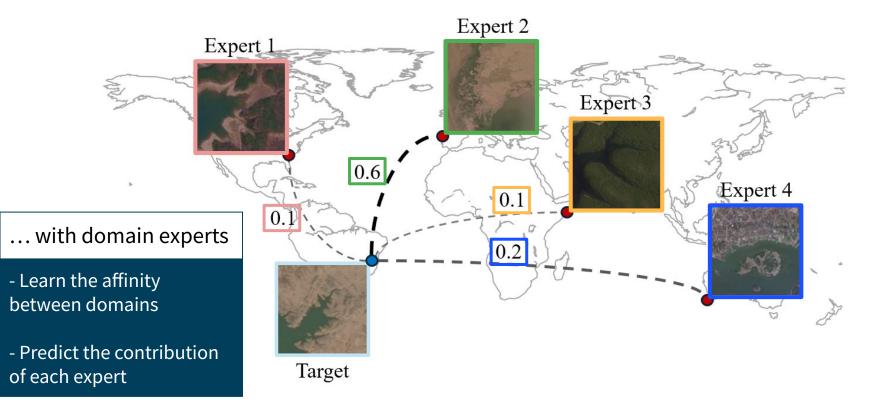
Dramatic impact of spatial domain shift overall!

	Method	Input type	Strategy	No dom BC↑	nain shift mIoU↑	Tempora BC↑	al domain shift mIoU↑	Spatial BC↑	domain shift mIoU↑
	Random		_	4.9	7.3	5.0	7.3	4.9	7.1
et	TSViT monthly	Single image	Mono	11.8	50.5	9.9	47.3	7.9	31.2
arthN	UTAE monthly	Single image	Mono	13.8	53.7	10.9	53.7	9.0	36.9
artl	TSViT weekly	SITS	Mono	12.5	50.9	10.9	51.4	7.4	32.2
сE	UTAE weekly	SITS	Mono	14.3	54.4	11.3	54.7	8.7	37.8
mi	A2Net	Image pair	Bi	11.5	47.2	11.0	46.7	8.2	37.9
DynamicE	SCanNet	Image pair	Bi	13.9	53.0	13.1	55.6	9.3	37.3
Ð.	TSSCD	Pixel-wise SITS	Multi	4.7	33.9	5.2	29.4	5.2	22.9
	Ours	SITS	Multi	22.4	60.5	15.3	61.7	10.1	38.5
85	Random			0.1	28.1	0.1	28.1	0.1	28.1
	TSViT monthly	Single image	Mono	0.5	60.2	0.5	56.8	0.4	49.8
S	UTAE monthly	Single image	Mono	0.6	67.1	0.6	66.0	0.6	63.0
D	A2Net	Image pair	Bi	0.5	61.5	0.6	56.1	0.5	53.0
M	SCanNet	Image pair	Bi	0.7	64.9	0.8	62.8	0.4	58.8
	TSSCD	Pixel-wise SITS	Multi	0.1	47.7	0.2	49.6	0.1	43.6
	Ours	SITS	Multi	1.7	72.0	1.9	71.1	0.7	66.2





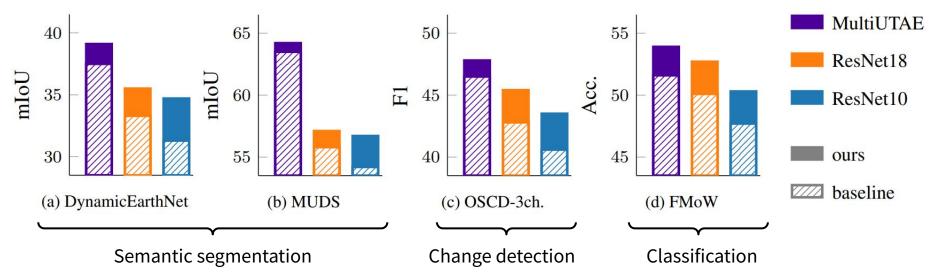
A. Kuriyal, E. Vincent, M. Aubry, L. Landrieu. CoDEx: Combining Domain Expertise for Spatial Generalization in Satellite Image Analysis. CVPRW 2025



A. Kuriyal, E. Vincent, M. Aubry, L. Landrieu. CoDEx: Combining Domain Expertise for Spatial Generalization in Satellite Image Analysis. CVPRW 2025

Improving performance:

- across 3 tasks and 3 baselines
- on 4 satellite image datasets



A. Kuriyal, E. Vincent, M. Aubry, L. Landrieu. CoDEx: Combining Domain Expertise for Spatial Generalization in Satellite Image Analysis. CVPRW 2025

Outline

1 Afghan archaeological site looting detection

2 Semantic change detection and domain shift analysis Evaluating the impact of temporal/spatial shift
 Addressing spatial shift with domain experts

3 Crop-type classification with few or no annotations

Outline

1 Afghan archaeological site looting detection

Detecting Looted Archaeological Sites from Satellite Image Time Series **E. Vincent**, M. Saroufim, J. Chemla, Y. Ubelmann, P. Marquis, J. Ponce, M. Aubry EarthVision CVPR Workshop 2025

Best student paper award

2 Semantic change detection and domain shift analysis CODEx: Combining Domain Expertise for Spatial Generalization in

> Satellite Image Analysis A. Kuriyal, **E. Vincent**, M. Aubry, L. Landrieu – EarthVision CVPR Workshop 2025

3 Crop-type classification with few or no annotations

Pixel-wise Agricultural Image Time Series Classification: Comparison and a Deformable Prototype-based Approach **E. Vincent**, J. Ponce, M. Aubry – IGARSS 2025

Task

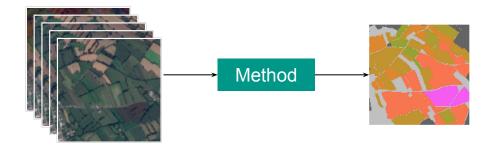
Agricultural satellite image time series (SITS) classification

Time

Crop-type pixel-wise classification (wheat, oat, potatoes, ...)

Agricultural satellite image time series (SITS) classification

Time

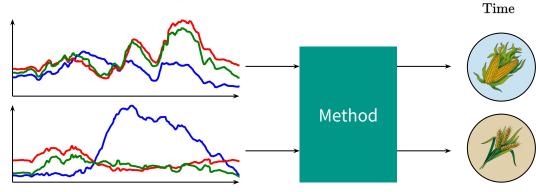


Whole-image methods

- Explicitly leverage the image structure
- U-Net + temporal aggregation (3D-Unet)
- U-Net + temporal attention encoder (UTAE)

≻ Designed for SITS

R. Rustowicz et al. Semantic segmentation of crop type in Africa: A novel dataset and analysis of deep learning methods. CVPR workshops 2019. V. Sainte Fare Garnot et al. Panoptic segmentation of satellite image time series with convolutional temporal attention networks. CVPR 2021.



Time series-based methods

- Whole-series based (1NN, NCC)
- Feature based (BoP, shapelet based, deep encoders)

Not necessarily designed for SITS specifically

→ generic methods for multivariate time series classification (MTSC)

V. Sainte Fare Garnot et al. Lightweight temporal self-attention for classifying satellite images time series. AALTD 2020. W. Tang et al. Omni-scale CNNs: a simple and effective kernel size configuration for time series classification. ICLR 2022.

Methods introduced so far \rightarrow Supervised

- require vast amount of labeled data
- low interpretability

Methods introduced so far \rightarrow Supervised

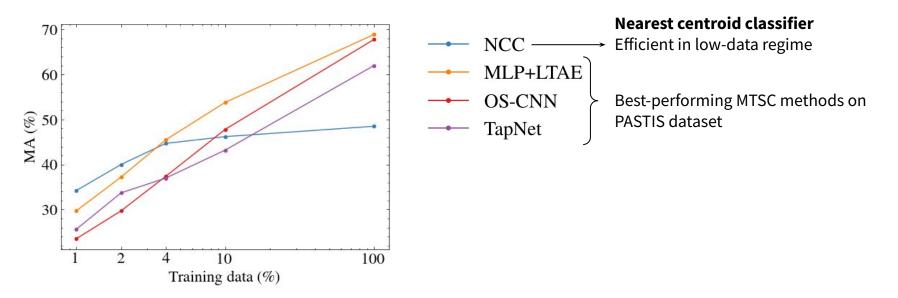
- require vast amount of labeled data
- low interpretability

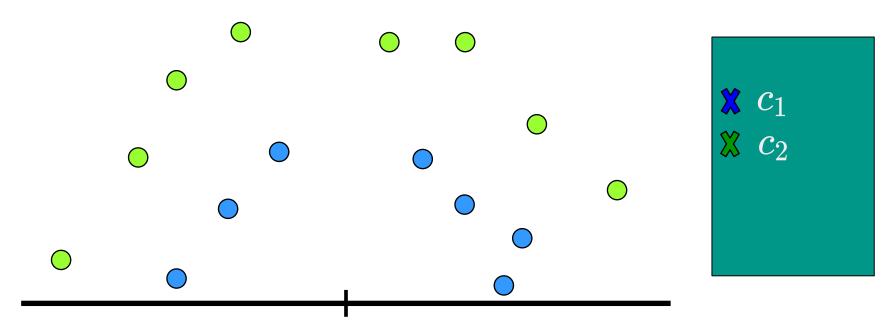
How do they perform in low-data regime on the crop-type classification task?

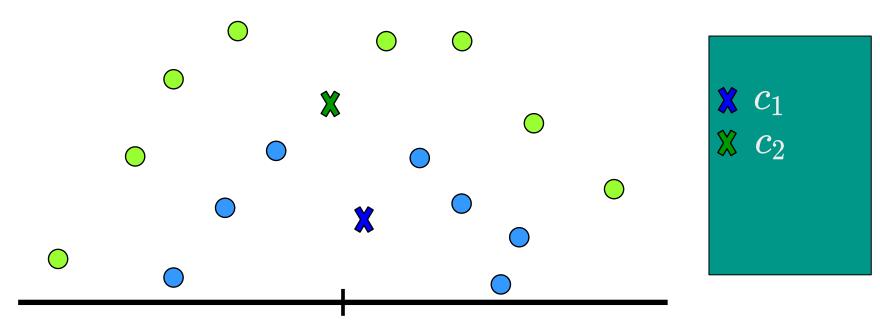
Related Work

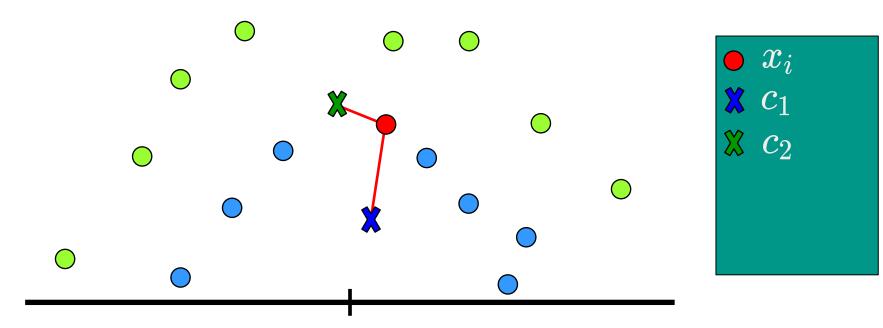
Methods introduced so far \rightarrow Supervised

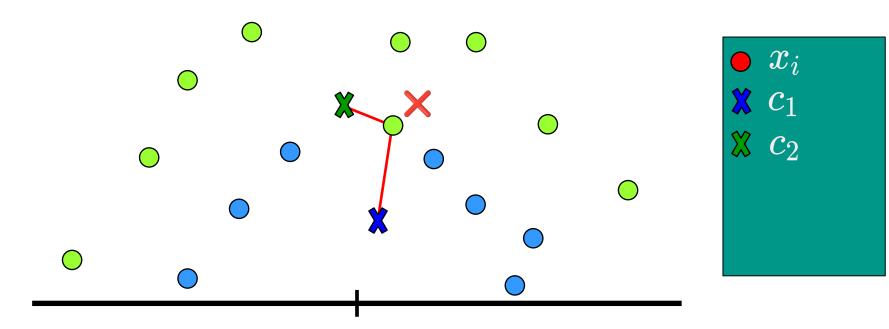
- require vast amount of labeled data
- low interpretability

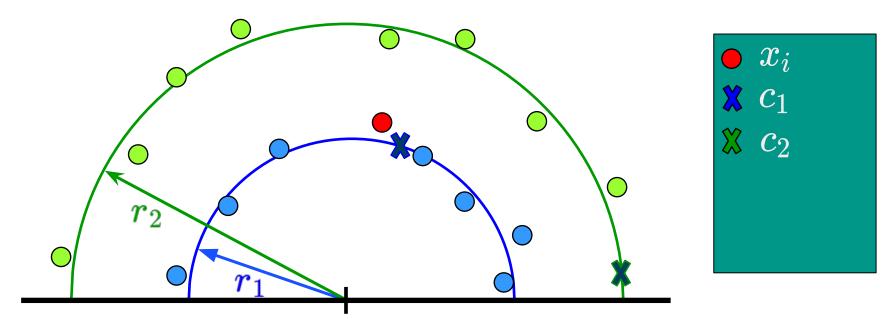




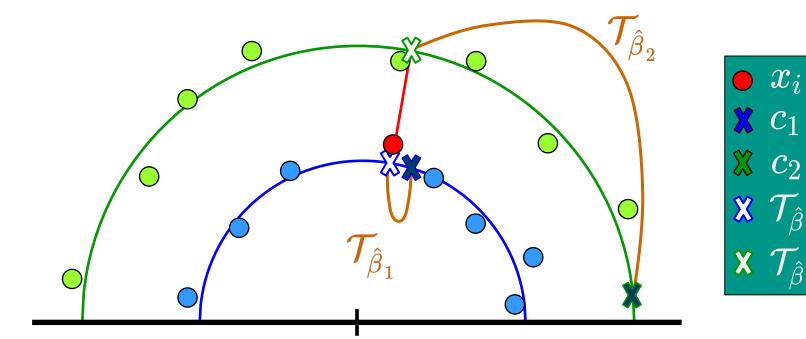




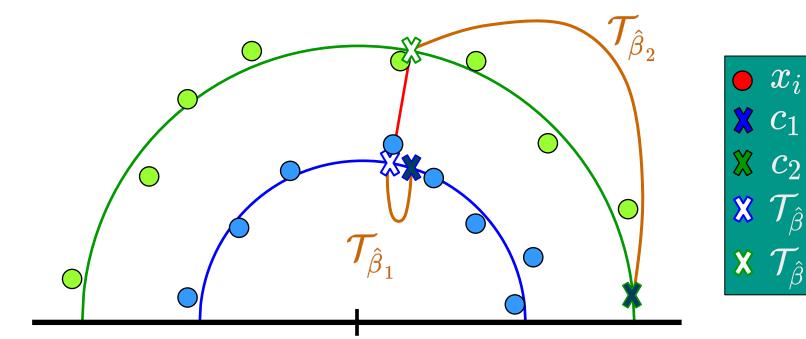




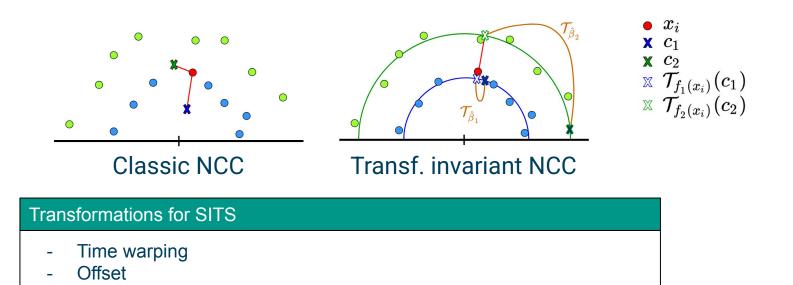
T. Monnier et al. Deep Transformation-Invariant Clustering. NeurIPS 2020.



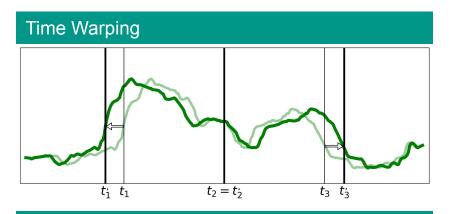
 $egin{array}{c} c_1 \ c_2 \ \end{array}$



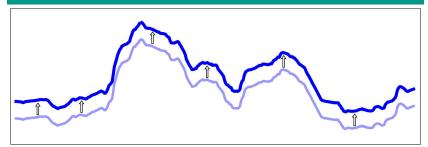
 $egin{array}{c} c_1 \ c_2 \ \end{array}$

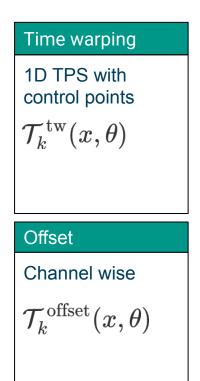


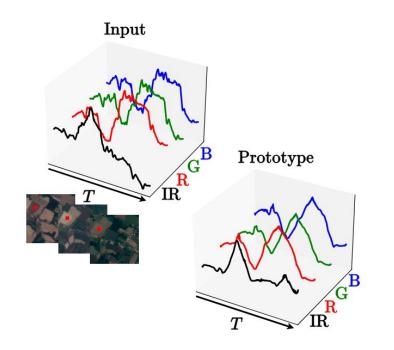
DTI-TS: Transformations

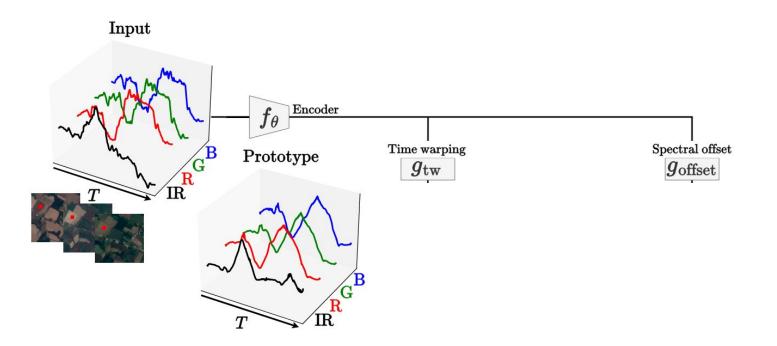


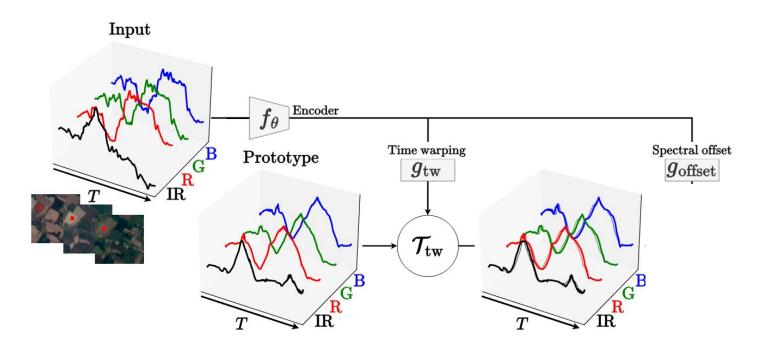
Offset

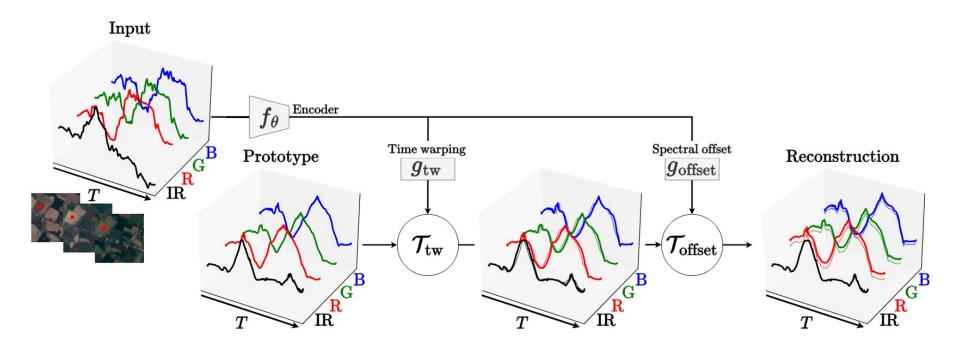


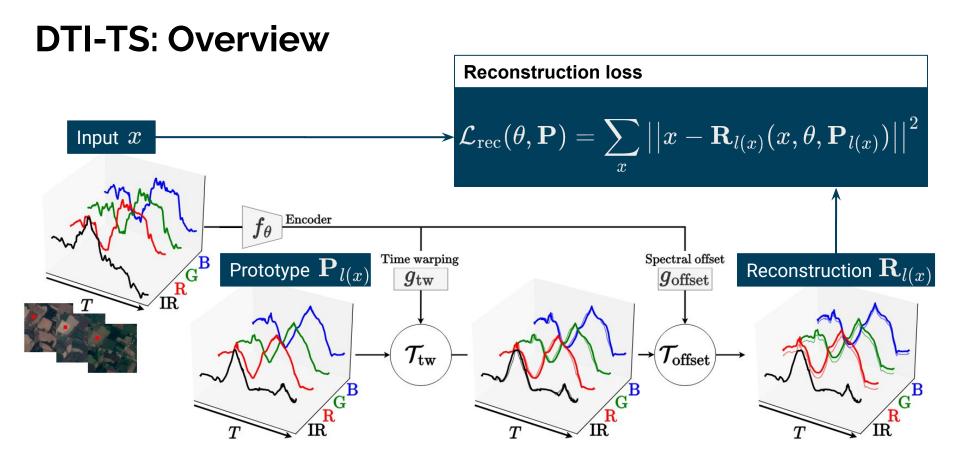


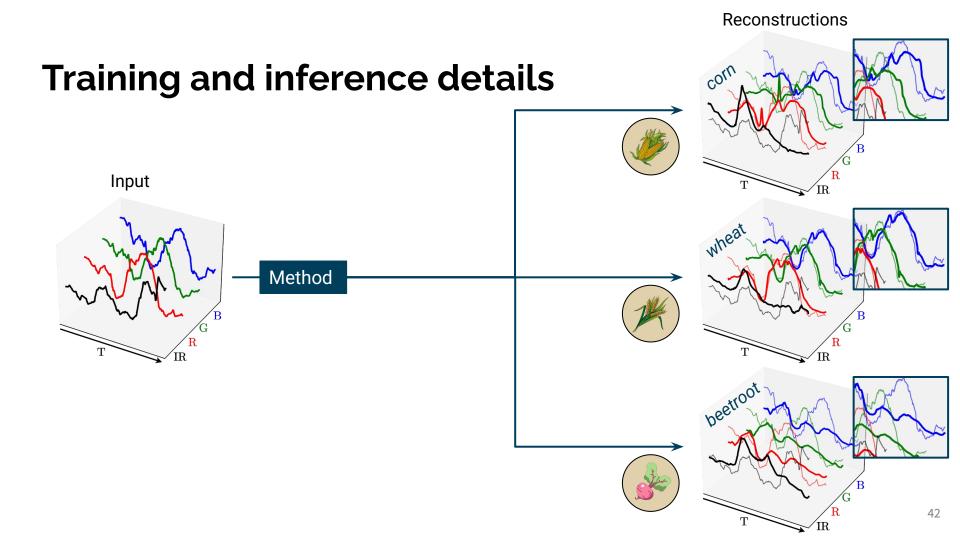


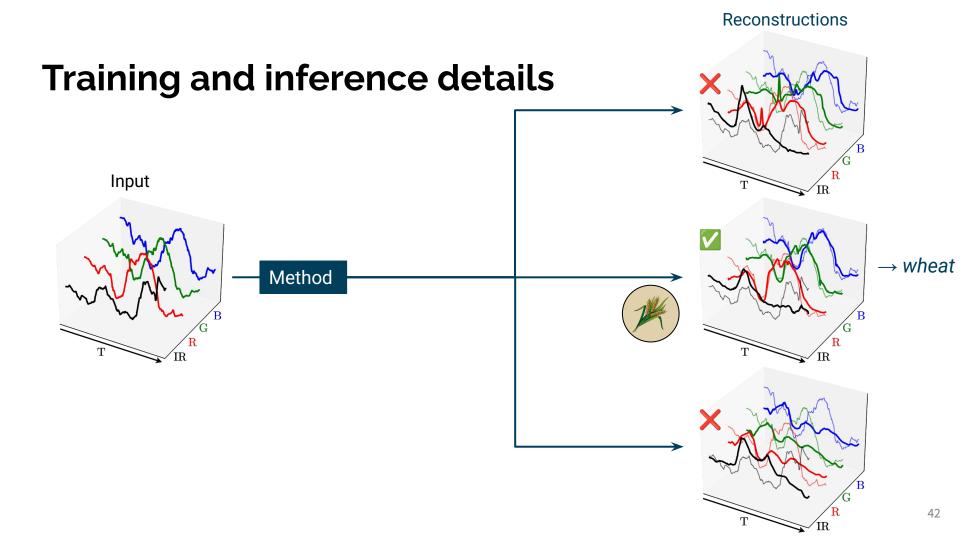




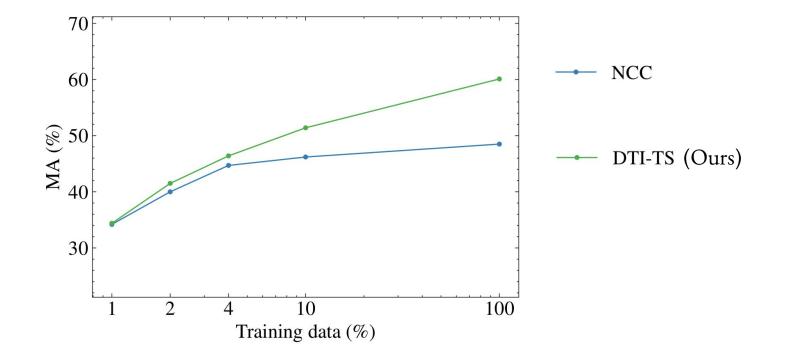




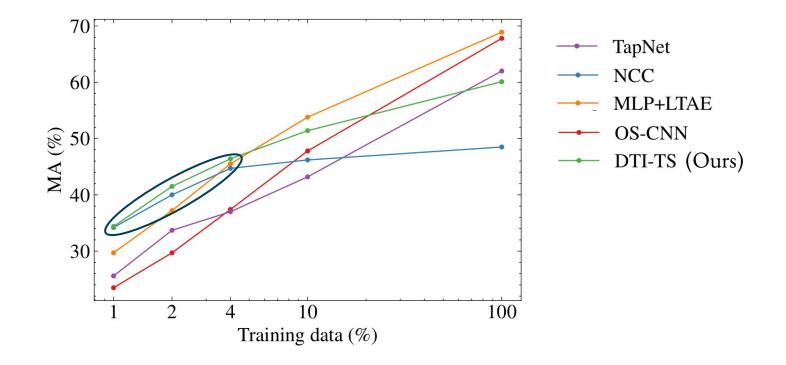




Efficient in low-data regime



Efficient in low-data regime



Method	PASTIS MA↑	TS2C MA↑	DENET. MA↑
MLP + LTAE OS-CNN TapNet MLSTM-FCN SVM Random Forest 1NN-DTW 1NN			
NCC DTI-TS: NCC + Time warping + Offset			

V. Sainte Fare Garnot et al. Panoptic segmentation of satellite image time series with convolutional temporal attention networks. ICCV, 2021.

G. Weikmann et al. Timesen2crop: A million labeled samples dataset of sentinel 2 image time series for crop-type classification. JSTARS, 2021.

L. Kondmann et al. Denethor: The dynamicearthnet dataset for harmonized, inter-operable, analysis-ready, daily crop monitoring from space. NeurIPS, 2021.

L. Kondmann et al. Early crop type classification with satellite imagery: an empirical analysis. ICLR Workshop, 2022.

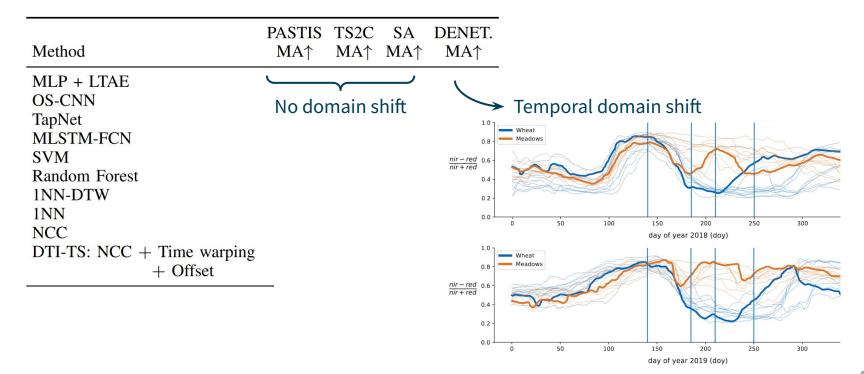


V. Sainte Fare Garnot et al. Panoptic segmentation of satellite image time series with convolutional temporal attention networks. ICCV, 2021.

G. Weikmann et al. Timesen2crop: A million labeled samples dataset of sentinel 2 image time series for crop-type classification. JSTARS, 2021.

L. Kondmann et al. Denethor: The dynamicearthnet dataset for harmonized, inter-operable, analysis-ready, daily crop monitoring from space. NeurIPS, 2021.

L. Kondmann et al. Early crop type classification with satellite imagery: an empirical analysis. ICLR Workshop, 2022.

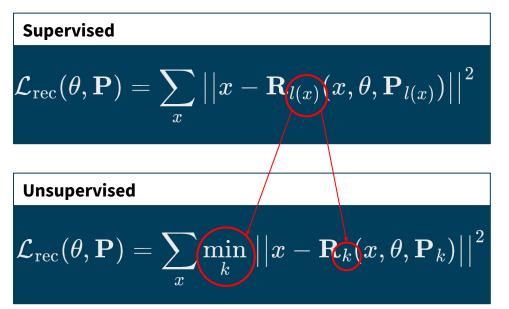


L. Kondmann et al. Denethor: The dynamicearthnet dataset for harmonized, inter-operable, analysis-ready, daily crop monitoring from space. NeurIPS, 2021.

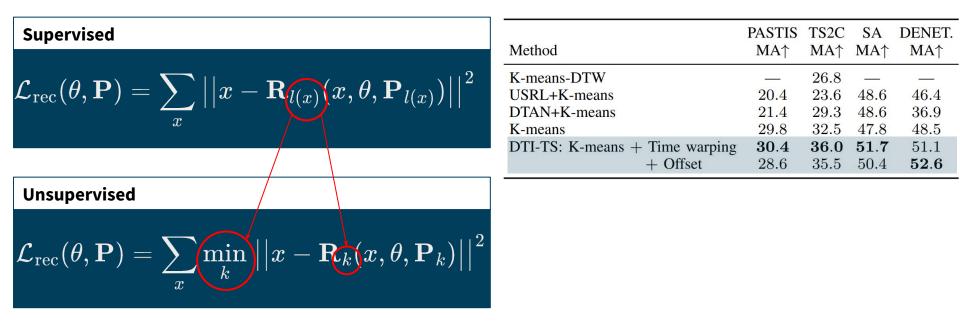
Method	PASTIS MA↑	TS2C MA↑	SA MA↑	DENET. MA↑
MLP + LTAE	65.9	80.9	63.7	43.6
OS-CNN	68.1	81.2	60.3	39.2
TapNet	60.3	77.3	56.7	43.7
MLSTM-FCN	10.9	44.0	47.9	48.3
SVM	48.7	56.1	52.8	28.6
Random Forest	46.6	50.2	61.3	51.6
1NN-DTW		23.0		
1NN	40.1	35.0	54.9	48.2
NCC	48.4	49.9	46.4	55.5
DTI-TS: NCC + Time warping	51.4	52.3	49.7	56.4
+ Offset	53.8	55.0	50.0	62.9
				
	No domain shift			

shift

Can also be trained without supervision



Can also be trained without supervision

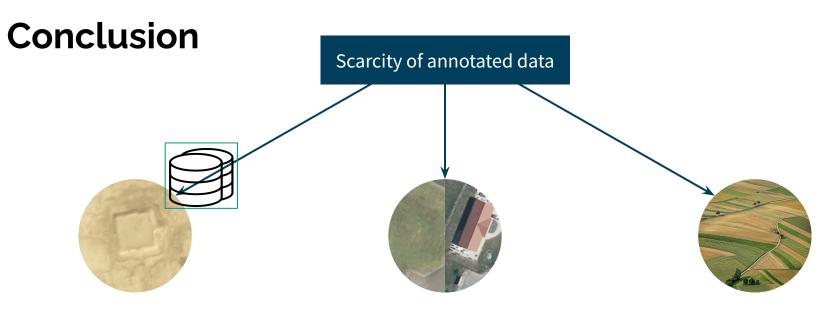


Progress Recap

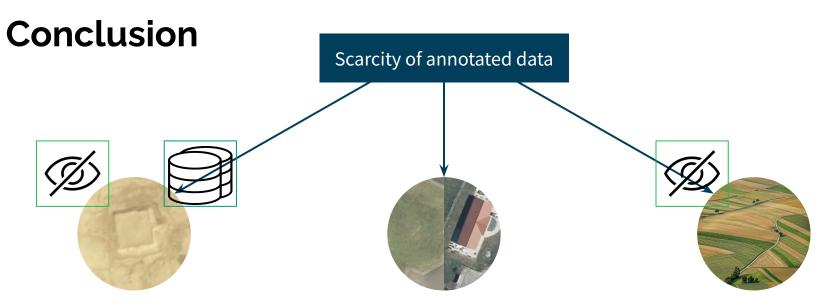
1 Afghan archaeological site looting detection

2 Semantic change detection and domain shift analysis

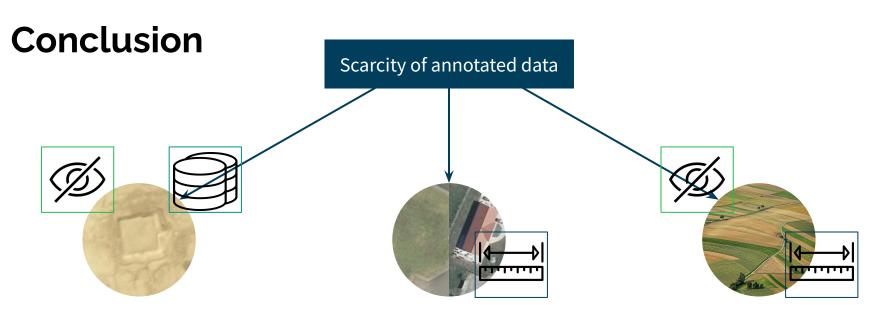
3 Crop-type classification with few or no annotations



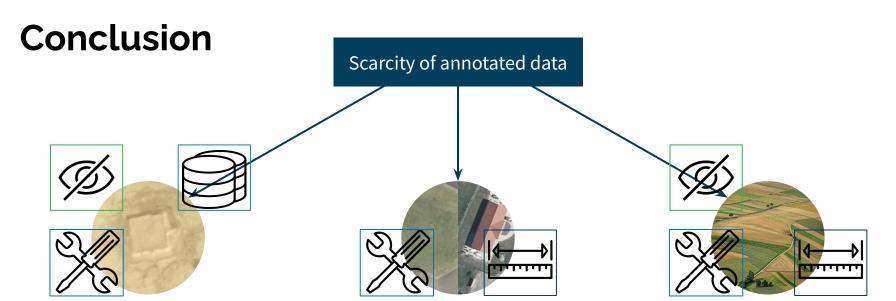
 Evaluating the impact of temporal/spatial shift
 Addressing spatial shift with domain experts



 Evaluating the impact of temporal/spatial shift
 Addressing spatial shift with domain experts



 Evaluating the impact of temporal/spatial shift
 Addressing spatial shift with domain experts



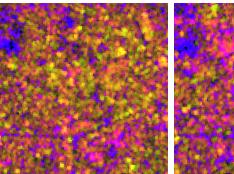
- Evaluating the impact of temporal/spatial shift
 Addressing spatial shift with domain experts
- Learning with low to no data
 Efficiency in temporal shift settings

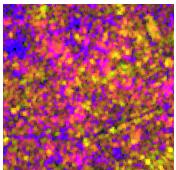
Future work

Towards increased **temporal** multimodality:

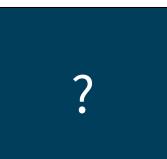
• sensors, resolutions

• radar data



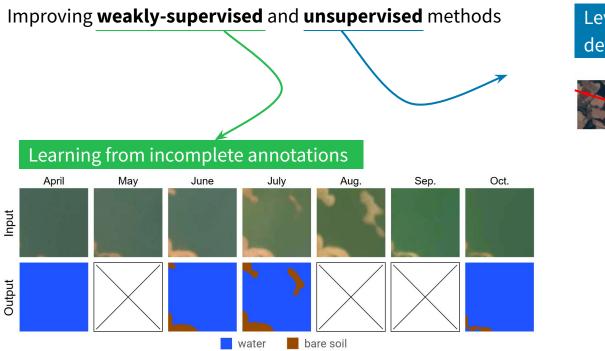


• 3D data

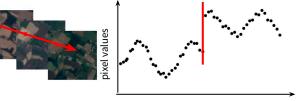


Future work

Towards increased **temporal** multimodality:



Leveraging change point detection techniques



time

Analysis of satellite image time series for classification and change detection

Elliot Vincent - May 27th, 2025

<u>Committee:</u> Sébastien LEFEVRE Jan Dirk WEGNER Pauline LUC Charlotte PELLETIER Gabriele FACCIOLO Mathieu AUBRY (advisor) Jean PONCE (co-advisor)

Thanks to all my co-authors!

